Как передовые космические технологии помогают людям. Космические технологии будущего: покорение дальнего и ближнего космоса Новые технологии по освоению космоса

В 2017 году исполняется 60 лет с начала практического освоения космического пространства человеком. За эффектными стартами космических кораблей стоят высокие технологии и смелые инженерные решения, которые делают возможными всё более далёкие и длительные космические экспедиции. Готовятся пилотируемые полёты на Луну и Марс, а автоматические станции уже достигли пределов Солнечной системы. О некоторых передовых космических разработках читателям РИА "Новости" рассказывает фотолента.

Фотолента подготовлена при поддержке Национального исследовательского технологического университета "МИСиС".

© РИА Новости Успешное освоение космоса невозможно без надежных космических кораблей. В России разрабатывается пилотируемый транспортный корабль нового поколения (ПТК) «Федерация». На борту «Федерации» могут достаточно комфортно разместиться до шести членов экипажа.

1 из 11

Успешное освоение космоса невозможно без надежных космических кораблей. В России разрабатывается пилотируемый транспортный корабль нового поколения (ПТК) «Федерация». На борту «Федерации» могут достаточно комфортно разместиться до шести членов экипажа.

На эффективность работы космонавтов значительно влияет правильная организация пространства. В обитаемом отсеке «Федерации», помимо систем управления, имеются кухонный блок, медицинский пункт, туалет и помещение для уединения. Дизайн и эргономика интерьера ПТК «Федерация» созданы в Инжиниринговом центре прототипирования высокой сложности НИТУ «МИСиС».


2 из 11

На эффективность работы космонавтов значительно влияет правильная организация пространства. В обитаемом отсеке «Федерации», помимо систем управления, имеются кухонный блок, медицинский пункт, туалет и помещение для уединения. Дизайн и эргономика интерьера ПТК «Федерация» созданы в Инжиниринговом центре прототипирования высокой сложности НИТУ «МИСиС».

© НИТУ "МИСиС", Владимир Пирожков

Новый корабль получит новые полетные кресла из углепластика. Впервые в российской космонавтике предусмотрена регулировка размеров, что позволяет подогнать кресло под космонавта любого роста. Таким образом, кресла становятся многоразовыми и их больше не нужно отливать отдельно под каждого члена экипажа.


3 из 11

Новый корабль получит новые полетные кресла из углепластика. Впервые в российской космонавтике предусмотрена регулировка размеров, что позволяет подогнать кресло под космонавта любого роста. Таким образом, кресла становятся многоразовыми и их больше не нужно отливать отдельно под каждого члена экипажа.

© НИТУ "МИСиС", Владимир Пирожков

© НИТУ "МИСиС", Сергей Гнусков В космической технике используются самые современные материалы. Один из них – гибридное металл-органическое соединение – перовскит. Перовскиты могут применяться в гибких солнечных батареях, светодиодах, лазерах, мониторах и фотодекторах высокой чувствительности. Ряд ученых даже предсказывает в ближайшее время «перовскитовую революцию», которая кардинально изменит многие технологии.


4 из 11

В космической технике используются самые современные материалы. Один из них – гибридное металл-органическое соединение – перовскит. Перовскиты могут применяться в гибких солнечных батареях, светодиодах, лазерах, мониторах и фотодекторах высокой чувствительности. Ряд ученых даже предсказывает в ближайшее время «перовскитовую революцию», которая кардинально изменит многие технологии.

© НИТУ "МИСиС", Сергей Гнусков

© РИА Новости В космосе нет «станций подзарядки», поэтому для дальних экспедиций необходимы источники энергии, способные без замены и обслуживания работать десятки лет. На фото бетавольтаический преобразователь («ядерная батарейка») – источник электроэнергии, получаемой за счет преобразования энергии распада радиоактивных материалов.


6 из 11

В космосе нет «станций подзарядки», поэтому для дальних экспедиций необходимы источники энергии, способные без замены и обслуживания работать десятки лет. На фото бетавольтаический преобразователь («ядерная батарейка») – источник электроэнергии, получаемой за счет преобразования энергии распада радиоактивных материалов.

© РИА Новости В различных устройствах корабля – от двигателей до систем навигации – необходимы мощные и эффективные источники магнитного поля. Такими источниками являются постоянные магниты на основе редкоземельных магнитотвердых материалов. Они способны работать при экстремальных температурах открытого космоса (от – 180 до +150 градусов Цельсия).


Передовые технологии чаще всего создаются для космической отрасли или на стыке с ней. Впоследствии многие из них обретают «вторую жизнь», становясь неотъемлемой частью жизни землян. Как это происходит и почему некоторые продукты космических технологий буквально перерождаются на Земле, разбиралась «Лента.ру».

Среди многих людей, которые едва разбираются в космической тематике, бытует мнение, что пилотируемая космонавтика -отрасль, исключительно нацеленная на престиж страны и довольно бесполезная с практической точки зрения. Ведь после высадки астронавтов на Луну человечество не продвинулось дальше МКС, а тем временем беспилотные аппараты добрались аж до Плутона. Но это совсем не так: именно для космоса создаются самые современные технологии, которые после испытаний и некоторых изменений попадают на Землю, где становятся массовым продуктом.

Козырные карты

Практически у каждого на смартфоне установлены картографические сервисы. При этом немногие задумываются, как эти карты появились и почему они настолько точные. Объяснение этому есть, оно довольно простое: добиться такой точности при столь огромных масштабах удалось благодаря космическим аппаратам, которые на протяжении многих лет проводят дистанционное зондирование Земли.

Так как мониторинг из космоса ведется на постоянной основе, благодаря спутниковым технологиям удается, например, предупреждать стихийные бедствия и оценивать ущерб от них. В частности - наводнения и лесные пожары. В случае последних, особенно когда они происходят в удаленных районах, свежие спутниковые снимки особенно актуальны, ведь они показывают масштаб пожаров и направление распространения огня. Вкупе с метеорологическими прогнозами подобная информация позволяет оперативно разработать стратегию борьбы с возгораниями.

Фото: Алексей Максименко / Globallookpress.com

Кроме всего прочего, дистанционное зондирование Земли позволяет проводить мониторинги сельскохозяйственного, природоохранного и строительного характера, в том числе и выявляя законодательные нарушения.

Всеми этими делами за пределами планеты занимается Государственная корпорация «РОСКОСМОС». Но не каждому известно, что Корпорация активно работает и на Земле.

Атомное качество

Одно из предприятий, входящих в структуру РОСКОСМОСА и работающих по широкому профилю, - это Корпорация ВНИИЭМ. Созданный в 1941 году для разработки и быстрейшего выпуска электротехнических средств для обороны Москвы ВНИИЭМ сравнительно быстро укрупнился и стал одним из главных научно-производственных предприятий Советского Союза, а затем и России.

Сейчас один из главных продуктов ВНИИЭМ - системы управления АЭС. Еще в советские времена предприятие создало электронную «начинку» для Ленинградской, Курской и Чернобыльской атомных электростанций. А сейчас ВНИИЭМ разрабатывает комплексы электрооборудования системы управления и защиты для водо-водяных энергетических реакторов. Устанавливаются подобные системы и за рубежом, например на иранской АЭС «Бушер».

Фото: Ahmad Halabisaz / Zumapress / Globallookpress.com

Еще одна не менее интересная разработка ВНИИЭМ - бесконтактные электродвигатели постоянного тока. Их внутренняя полость надежно изолирована от внешней среды, что существенно расширяет область их применения. Например, бесконтактные электродвигатели, первоначально предназначенные исключительно для космической отрасли, теперь широко применяются и в других экстремальных условиях, например под водой. Помимо бесконтактных электродвигателей есть и электронасосы, которые способны выполнять даже самые сложные задания в суровых условиях.

Также ВНИИЭМ производит электротехнические и конструкционные материалы самого широкого применения, среди которых - композиционные материалы с впечатляющими характеристиками и с сохранением высоких изоляционных свойств при сверхвысоких температурах.

В стороне от вполне «бытовых» разработок не остался и известный Центр им. Хруничева, тоже входящий в периметр РОСКОСМОСА. А в частности - его «дочка», Усть-Катавский вагоностроительный завод им. С.М. Кирова, основанный в 1758 году, одно из старейших предприятий России. Сейчас здесь производят трамвайные вагоны, в том числе и самые современные, которые вскоре будут ездить по улицам крупнейших городов России.

А еще завод выпускает целую серию оборудования для топливно-энергетического комплекса, в том числе газорегулирующее и насосное оборудование, а также трубопроводную арматуру, пользующиеся огромным спросом на «земных» предприятиях.

Лестницы в небо

Существует и такое предприятие, как АО «Государственный ракетный центр имени академика В.П. Макеева», где производят не только боевые ракетные комплексы, но и вполне гражданскую продукцию. Например, пожарные автоподъемники - без таких приспособлений бороться с пожарами и спасать жизни людей во многих случаях не представлялось бы возможным. Отдельно стоит отметить, что автоподъемники предназначены для работы на высоте вплоть до 50 метров.

В ракетном центре также производят и такие необычные для России изделия, как ветроэнергетические установки с вертикальной осью вращения. Интеграция подобных разработок в соответствующих районах страны позволит не только серьезно сэкономить на электричестве, но и уменьшить ущерб, который люди наносят природе.

Кроме того, на предприятии налажено производство не менее уникального горно-шахтного оборудования, оборудования для нефтеперерабатывающей промышленности, а также гидравлических монтажных инструментов.

Входящий в состав РОСКОСМОСА Златоустовский машиностроительный завод не ограничивается созданием оборудования для космоса и передовых образцов оружия. Так, именно там производят современные электрические и газоэлектрические, а также настольные плиты. Такие продукты определенно могут пригодиться в любом домашнем хозяйстве.

Помимо этого, на заводе налажено производство медицинского оборудования и радиаторов. Последние отличаются повышенной тепловой мощностью и помогают в создании энергоэффективной отопительной системы.

Так что космос везде вокруг нас, и предприятия РОСКОСМОСА этому проникновению активно способствуют.

Проект предложенной системы космических запусков Startram, для старта строительства и реализации которого потребуется, по предварительным меркам, около 20 миллиардов долларов, обещает возможность доставки на орбиту грузов весом до 300 000 тонн с очень демократичной ценой в 40 долларов за килограмм полезной нагрузки. Если учесть, что в настоящий момент стоимость доставки 1 кг полезной нагрузки в космос составляет в лучшем случае 11 000 долларов, проект выглядит весьма интересным.

Для реализации проекта Startram не потребуются ракеты, топливо или ионные двигатели. Вместо всего этого здесь будет использоваться технология магнитного отталкивания. Стоит отметить, что концепт поезда на магнитной подушке далеко не нов. На Земле уже функционируют составы, которые двигаются по магнитному полотну со скоростью около 600 километров в час. Однако на пути всех этих маглевов (использующихся преимущественно в Японии) находится одно серьезное препятствие, которое ограничивает их максимальную скорость. Для того чтобы такие поезда смогли раскрыть свой полный потенциал и достигать максимально возможной скорости, нам необходимо избавиться от атмосферного воздействия, которое замедляет их движение.

Проект Startram предлагает решение этого вопроса путем строительства длинного навесного вакуумного тоннеля на высоте около 20 километров. На такой высоте сопротивление воздуха становится менее выраженным, что позволит производить космические запуски на гораздо более высоких скоростях и с гораздо меньшим сопротивлением. Космические аппараты в буквальном смысле будут выстреливаться в космос, без необходимости в преодолении атмосферы. такой системы потребует около 20 лет работы и инвестиций на общую сумму в 60 миллиардов долларов.

Ловец астероидов

Среди любителей научной фантастики в свое время жарко горели споры об антинаучном способе и явно недооцененной сложности посадки на астероид, показанной в знаменитом американском фантастическом триллере «Армагеддон». Даже в NASA как-то отметили, что нашли бы вариант получше (и реальней), чтобы попробовать спасти Землю от неминуемой гибели. Более того, аэрокосмическое агентство недавно выделило грант на разработку и строительство «ловца комет и астероидов». Космический аппарат специальным мощным гарпуном будет цепляться к выбранному космическому объекту и за счет силы своих двигателей оттягивать эти объекты от опасной траектории сближения с Землей.

Кроме того, аппарат можно будет использовать для ловли астероидов с прицелом дальнейшей добычи полезных ископаемых на них. Космический объект будет притягиваться гарпуном и отводиться в нужное место, например, на орбиту Марса или Луны, где будут располагаться орбитальные или наземные базы. После чего к астероиду будут отправляться группы добычи.

Солнечный зонд

Как и на Земле, на Солнце тоже есть свои ветра и шторма. Однако в отличие от земных, солнечные ветра способны не просто испортить вашу прическу, они способны вас в буквальном смысле испарить. На многие вопросы о Солнце, ответов на которые нет до сих пор, по мнению аэрокосмического агентства NASA, сможет ответить «Солнечный зонд», который отправится к нашему светилу в 2018 году.

Космический аппарат должен будет приблизится к Солнцу на расстояние около 6 миллионов километров. Это приведет к тому, что зонду придется испытать на себе воздействие радиационной энергии такой мощности, какую не испытывал ни один рукотворный космический аппарат. Защититься от воздействия губительной радиации зонду, по мнению инженеров и ученых, поможет карбоно-композитный тепловой экран толщиной 12 сантиметров.

Однако NASA не может просто направить зонд сразу к Солнцу. Космическому аппарату придется сделать как минимум семь орбитальных пролетов вокруг Венеры. А на это у него уйдет около семи лет. Каждый оборот будет ускорять зонд и подстраивать траекторию для правильного курса. После последнего облета зонд направится к орбите Солнца, на расстояние 5,8 миллиона километров от его поверхности. Таким образом он станет наиболее приближенным к Солнцу рукотворным космическим объектом. Нынешний рекорд принадлежит космическому зонду «Гелиос-2», который находится на расстоянии примерно 43,5 миллиона километров от Солнца.

Марсианский форпост

Открывающиеся перспективы будущих полетов на Марс и Европу грандиозны. В NASA верят, что если им не помешают никакие мировые катаклизмы и падения убийственных астероидов, то агентство отправит человека на марсианскую поверхность в течение ближайших двух десятилетий. В NASA даже уже успели представить концепт будущего марсианского форпоста, строительство которого планируется начать где-то в конце 2030-х годов.

Радиус планируемой исследовательской области будет составлять около 100 километров. Здесь будут располагаться жилые модули, научные комплексы, стоянка марсианских роверов, а также горно-шахтное оборудование для команды из четырех человек. Энергия для комплекса частично будет добываться благодаря нескольким компактным ядерным ректорам. Кроме этого, электричество будут добывать солнечные панели, которые, конечно же, будут становиться малоэффективными на случай марсианских песчаных бурь (отсюда и необходимость в компактных реакторах).

Со временем в этой области поселится множество научных команд, которым придется самостоятельно выращивать пищу, собирать марсианскую воду и даже создавать на месте ракетное топливо для полетов обратно на Землю. К счастью, множество полезных и необходимых материалов для строительства марсианской базы содержится прямо в марсианском грунте, поэтому везти некоторые вещи для основания первой марсианской колонии не придется.

Ровер NASA ATHLETE

Ровер ATHLETE (All-Terrain Hex-Limbed Extraterrestrial Explorer), похожий на паука, однажды займется колонизацией Луны. Благодаря своей особой подвеске, состоящей из шести независимых ног, способных поворачиваться во все стороны, ровер может передвигаться по грунту любой сложности. При этом наличие колес позволяет ему быстрее двигаться по более ровной поверхности.

Этот гексопод может оснащаться самым разным научным и рабочим оборудованием и при необходимости легко справляется с ролью передвижного крана. На фотографии выше, например, на ATHLETE установлен жилой модуль. Другими словами, ровер можно еще и использовать в качестве передвижного дома. Высота ATHLETE составляет около 4 метров. При этом он способен поднимать и перевозить объекты весом до 400 килограммов. И это при земной гравитации!

Самое важное преимущество ATHLETE заключается в подвеске, которая наделяет его невероятной подвижностью и способностью выполнять сложную работу по доставке тяжелых объектов, в отличие от неподвижных посадочных модулей, которые использовались в прошлом и используются сейчас. Одним из вариантов использования ATHLETE является и 3D-печать. Установка на него 3D-принтера позволит использовать ровер в качестве мобильного печатного оборудования лунных жилищ.

3D-напечатанные марсианские дома

Чтобы приблизить момент начала подготовки полета человека на Марс, NASA организовало архитектурный конкурс, задачей которого является разработка и спонсирование технологий 3D-печати, которые позволят методом трехмерной печати строить марсианские дома.

Единственное условие конкурса заключалось в использовании материалов, которые широко доступны для добычи на Марсе. Победителями стали две дизайнерские компании из Нью-Йорка, Team Space Exploration Architecture и Clouds Architecture Office, предложившие свой концепт марсианского дома ICE HOUSE. В качестве основы концепт предлагает использование льда (отсюда и название). Строительство зданий будет производиться в ледяных зонах Марса, куда будут отправляться посадочные модули, загруженные множеством компактных роботов, которые будут собирать грязь и лед для возведения сооружений вокруг этих модулей.

Стенки сооружений будут выполнены из смеси воды, геля и кремнезема. Как только материал замерзнет благодаря низким температурам на поверхности Марса, получится весьма себе подходящее для жилища помещение с двойными стенками. Первая стенка будет состоять из ледяной смеси и предоставлять дополнительную защиту от радиации, роль второй стенки будет выполнять сам модуль.

Продвинутый коронограф

Глубокому изучению солнечной короны (внешний слой атмосферы звезды, состоящий из заряженных частиц) мешает одно обстоятельство. И этим обстоятельством, как бы иронично это ни звучало, является само Солнце. Решением проблемы может являться так называемый объемный солнечный затемнитель, шар размером чуть больше теннисного мяча, выполненный из сверхтемного сплава титана. Суть затемнителя заключается в следующем: он устанавливается перед спектрографом, направленным на Солнце, и создает тем самым миниатюрное солнечной затмение, оставляя только солнечную корону.

В настоящий момент аэрокосмическое агентство NASA на своих космических аппаратах SOHO и STEREO использует плоские солнечные затемнители, однако плоский дизайн таких устройств создает некоторую расплывчатость изображения и лишние искажения. Решение этой проблемы подсказал сам космос. Земля, как известно, обладает своим собственным солнечным затемнителем, находящимся примерно в 400 000 километрах от нас. Этим затемнителем, конечно же, является Луна, благодаря которой мы время от времени становимся свидетелями солнечного затмения.

Объемный затемнитель NASA должен будет воспроизводить эффект лунного затмения, конечно же, только для космического аппарата, который будет исследовать Солнце, однако находясь на расстоянии двух метров от его спектрографа, затемнитель поможет исследовать солнечную корону без каких-либо проблем, помех и искажений.

Технологии Honeybee Robotics

Небольшая западная частная компания Honeybee Robotics, занимающаяся разработкой и производством различных космических технологий, недавно получила от аэрокосмического агентства NASA заказ на проведение двух новых технологических разработок для космической программы Asteroid Redirect System. Основная цель программы заключается в изучении астероидов и поиске способов борьбы с возможными угрозами их столкновения с Землей в будущем. Помимо этого, компания занимается разработкой и других не менее интересных вещей.

Например, одной из таких разработок является космическая пушка, которая будет выпускать по астероидам специальные снаряды и отстреливать куски от космического объекта. Отстрелив таким образом кусочек астероида, специальный космический аппарат поймает его своими роботизированными клешнями и переправит на лунную орбиту, где исследованием его структуры ученые смогут заняться уже более подробно. NASA планирует испытать это устройство на одном из трех астероидов: Итокава, Бенну или 2008 EV5.

Второй разработкой является так называемый космический нанобур для сбора образцов грунта с астероидов. Вес бура составляет всего 1 килограмм, а по размерам он чуть больше среднестатистического смартфона. Бур будет использоваться либо роботами, либо астронавтами. С помощью него будет производиться забор необходимого количества грунта для его дальнейшего анализа.

Солнечный спутник SPS-ALPHA

SPS-ALPHA представляет собой орбитальный космический аппарат, работающий на солнечной энергии и состоящий из десятков тысяч тонких зеркал. Накапливаемая энергия будет конвертироваться в микроволны и отправляться обратно на специальные земные станции, где оттуда уже будет передаваться на линии электропередач для питания целых городов.

Данный проект является, пожалуй, одним из самых сложных в плане реализации среди представленных в сегодняшней подборке. Во-первых, описываемая платформа SPS-ALPHA будет по размерам гораздо больше Международной космической станции. Ее строительство потребует очень много времени, целую армию астронавтов-инженеров и вложение колоссальных средств. Ввиду гигантских размеров, платформу придется строить прямо на орбите. С другой стороны, элементы платформы будут производиться из относительно дешевых и несложных с точки зрения массового производства материалов, а значит проект автоматически переходит из «невозможного» в «очень сложный», что, в свою очередь, открывает надежду на то, что однажды его реализацией действительно займутся.

Проект «Objective Europa»

Проект «Objective Europa» является самой сумасшедшей из когда-либо предложенных идей космических исследований. Его главной целью является отправка человека на Европу, одну из лун Юпитера, на борту специальной субмарины, благодаря которой будет производиться поиск возможной жизни в подледном океане спутника.

Безумства данному проекту добавляет еще и тот факт, что эта миссия в один конец. Любому астронавту, который решит отправиться на Европу, фактически придется согласиться пожертвовать своей жизнью во благо науки, получив при этом возможность ответить на самый сокровенный вопрос современной астрономии: есть ли в космосе жизнь, помимо земной?

Идея проекта «Objective Europa» принадлежит Кристину фон Бенгстону. В настоящий момент Бенгстон проводит краудсорсинговую компанию по привлечению средств в этот проект. Сама субмарина будет оснащена самыми современными технологиями. Здесь будет и сверхмощный бур, и многомерные тяговые двигателями, и мощнейшие прожектора, и, возможно, пара многофункциональных роботизированных рук. Подводной лодке, как и космическому аппарату, который доставит ее к Европе, потребуется мощная защита от радиации.

Выбор места посадки будет играть решающее значение. Толщина льда Европы практически по всей ее поверхности составляет несколько километров, поэтому аппарат лучше всего будет сажать рядом с разломами и трещинами, где ледяная корка не такая прочная и толстая. Проект, конечно же, вызывает очень много вопросов, в том числе морального характера.

Современные астронавты все еще вынуждены мириться с невесомостью. Создать искусственную гравитацию можно за счет центробежной силы, заставив корабль или орбитальную станцию вращаться вокруг своей оси. Однако этот способ приемлем лишь для станций величиной с футбольное поле. На более мелких объектах скорость вращения будет такой, что астронавты начнут испытывать дезориентацию и головокружение — вплоть до потери сознания.

Для человека не только утомительно, но и опасно выходить в открытый космос. Было бы неплохо, если бы все «внешние» работы за астронавтов совершали летающие роботы. Специалисты NASA уже сделали первый шаг к достижению этой цели, создав шарообразную автоматизированную камеру AERCam, которая будет проверять внешнюю поверхность Международной космической станции. В дальнейшем роботы смогут самостоятельно проводить техобслуживание и ремонт.


Чтобы покинуть корабль или вновь зайти на борт, астронавт проходит через воздушный шлюз. Альтернативой этой неудобной и небезопасной технологии может стать «порт скафандров» с герметичной кабиной и скафандром снаружи. Астронавты больше не будут страдать кессонной болезнью. Также уменьшится количество травм, связанных с длительным пребыванием в скафандре.


Цель международного проекта MAGDRIVE — создание бесконтактных механических узлов для космической техники. Зазор между частями механизмов обеспечивают магниты с одноименными полюсами. Принцип магнитной левитации, который применяется в поездах на воздушной подушке, позволит забыть о проблемах истирания, температурных деформаций и замерзания антифрикционных составов.


Для успеха космических миссий очень важна связь. Однако современные радиопередатчики потребляют слишком много энергии, что особенно критично в длительных межпланетных путешествиях. Одно из возможных решений проблемы — использование лазера, который позволит передавать данные со скоростью от 10 до 100 раз выше, чем радиопередатчик. Ожидается, что лазерные передатчики начнут использовать в 2017 году.


Человекоподобный робот Робонавт разработан NASA совместно с компанией General Motors. На сегодняшний момент один из Робонавтов находится на борту Международной космической станции, выполняя некоторые виды работ наряду с астронавтами. Однако для более широкого использования конечностям машины не хватает гибкости.


CleanSpace One — небольшой ящик с захватывающим устройством для сбора космического мусора. Разработку Швейцарского федерального института технологий уже дважды применяли для того, чтобы убрать с орбиты швейцарские спутники. В будущем подобные устройства будут блюсти чистоту в околоземном пространстве, где сейчас болтается около 55 тысяч различных объектов, в том числе и рукотворных.


Серьезную угрозу для покорителей космоса представляет радиация. Во время путешествия на Марс астронавты получают дозу радиации, в сто раз превышающую годовую норму на Земле. Один из способов решить эту проблему предложила британская Лаборатория Резерфорда-Эплтона. Их разработка называется мини-магнитосферой. Идея состоит в том, чтобы создать вокруг космического корабля магнитное поле, сходное с магнитным полем Земли.


Специалисты национальной лаборатории в Беркли трудятся над технологиями синтеза биологических молекул. Эти разработки позволят астронавтам создавать еду, лекарства, горючее из минералов, газов и почв, собранных на чужеродных планетах, а также из продуктов человеческой жизнедеятельности. Биосинтез открывает безграничные возможности. Например, еду можно получить из бактерии спирулины, а микроб Methanobacterium thermoautotrophicum пригодится для производства метана и кислорода.


В 2012 году японская строительная компания Obayashi Corporation пообещала, что к 2050-му создаст космический лифт высотой 96000 км. В лифте будут использоваться кабины на магнитных подушках. Благодаря японской разработке стоимость вывода килограмма груза на орбиту снизится с нынешних $22 000 до $200.

Многие изобретения, сделанные с прицелом на космос, в итоге находят свое применение на Земле — в виде детского питания, подошв для обуви, солнцезащитных очков, которые поглощают ультрафиолетовое излучение, прочих полезных и приятных предметов. Даже любопытно, как скоро новые научно-фантастические технологии станут частью повседневной жизни.

Телескоп «Хаббл» и диагностика рака груди

Техника обработки изображения, разработанная для телескопа «Хаббл», сегодня помогает медикам раньше диагностировать рак груди. Она была создана перед полетом для обслуживания аппарата на орбите в 1993 году, чтобы улучшить качество размытых фотоснимков, однако теперь может применяться для поиска микроскопических уплотнений в ткани молочной железы на ранней стадии онкологических заболеваний. Сейчас технологию тестирует группа астрономов из Научного института космического телескопа (Space Telescope Science Institute) в Балтиморе и врачей из Университета Джонса Хопкинса и Медицинского центра Джорджтаунского университета в Вашингтоне. Если испытания пройдут успешно, очень скоро космические технологии оптимизации нечетких изображений можно будет найти в кабинетах маммографии.

Марсианская миссия Viking и прочные шины

Когда в конце 60-х NASA планировало запуск исследовательской миссии к Марсу, для аппаратов «Викинг-1» и «Викинг-2» были разработаны особые ультрапрочные шины. Ученые понимали, что автоматический космический аппарат не сможет совершить посадку на Красной планете, если будет оснащен обыкновенными колесами, и заключили контракт на производство шин с компанией Goodyear. Ее специалисты создали для марсианской миссии новый волокнистый материал, который был в пять раз прочнее стали. «Викинг-1» и «Викинг-2» успешно сели на Марсе и проработали значительно дольше срока, на который рассчитывали специалисты, а Goodyear внедрили разработку в коммерческие линейки своей продукции. Благодаря этому сегодня некоторые шины этой компании способны «пройти» на 16 000 км больше, чем их аналоги.

«Аполлон-11» и спортивные кроссовки

Лунные ботинки, разработанные для высадки американских космонавтов на Луну в 1969 году, являются «предками» современных кроссовок. Обувь участников лунной миссии была снабжена стельками, уменьшавшими давление на ступню, и «системой вентиляции». Сегодня эти технологии применяют компании-производители спортивных товаров. Тем не менее, 10 пар ботинок-первопроходцев так и остались на Луне: вместо них на борт взяли грунт и камни. Сегодня они все еще могут оставаться там. Если обувь цела, металлические пряжки и замки, скорее всего, выглядят так же, как в день высадки: на Луне нет кислорода, а значит, окисления не происходит. Однако силиконовые стельки и синтетическая ткань должны были истончиться из-за процессов газовыделения. Если кто-нибудь дотронется до космических ботинок, они, вероятно, рассыплются в пыль.

МКС и «липучка»

Текстильные застежки, которые также называют «липучками» и велкро, были изобретены в 1948 году и запатентованы в 1955. Впервые пользоваться ими начали космонавты, аквалангисты и горнолыжники. Лишь затем велкро проникли в текстильную промышленность и стали доступны обычным покупателям. Сегодня в российском сегменте Международной космической станции «липучки» используются для крепления мелких предметов к стенам модулей изнутри. Внутренняя поверхность отсеков здесь оклеена мягким материалом с микропетлями, а инструменты, канцелярские принадлежности и другие предметы снабжены полосками материала с микрокрючками. Если прижать такой карандаш к панели на стене, он прилипнет. Полоски материала с микропетлями есть и на одежде космонавтов: ведь из карманов в условиях невесомости все попросту «уплывает».

Модели ракетных двигателей и пересадка сердца

Технологии, разработанные NASA для моделирования течения жидкостей в ракетных двигателях, помогли американским медикам разработать миниатюрный сердечный насос, или бивентрикулярное вспомогательное устройство. Пациентам, которые ждут пересадки сердца, оно зачастую бывает жизненно необходимо. Такие аппараты способны поддерживать кровообращение даже в случаях, когда сердце работает очень плохо. Это позволяет создать «промежуточный этап трансплантации» и дает пациентам возможность дождаться появления подходящего донора.

Новый прибор имеет размер 2,5 на 7,5 см и весит всего 113 г: в 10 раз меньше, чем другие современные устройства вспомогательного кровообращения. Благодаря этому в 95% случаев инфекций, связанных с использованием подобных аппаратов, удается избежать. При этом сердечный насос может до восьми часов работать от аккумуляторов, предоставляя пациентам возможность заниматься обычными делами каждый день.

Космическая система очистки воды и небьющиеся очки

История очков с ударопрочными линзами, которые сегодня может купить в любом магазине оптики, началась в 1972 году. Тогда Управление по контролю за продуктами и лекарствами США (FDA) обязало производителей очков перейти на пластик, который невозможно разбить. Однако у нового материала существовал один минус: на нем быстро появлялись царапины. Решить эту проблему помогло открытие Теда Уайдевена - специалиста Научно-исследовательского центра им. Эймса NASA, который работал над системами очистки воды на космических кораблях. Уайдевен разработал технологию нанесения тонкой пластиковой пленки на поверхность фильтра для воды с помощью электрических разрядов, пропущенных сквозь пары органических соединений. Постепенно ноу-хау усовершенствовали и начали использовать для нанесения защитного покрытия на прозрачные забрала космических шлемов и другие пластиковые поверхности. В 1983 году компании Foster-Grant удалось получить у NASA лицензию на использование технологии в производстве оптики, и она попала в коммерческую сферу.